Date: November 25, 2020

To: Comprehensive Plan Review Committee Members

From: Christina Day, AICP, Director of Planning

Subject: Density Examples and Infrastructure Information

Questions were raised at recent Comprehensive Plan Review Committee meetings about providing examples of various densities and the capacity of Plano’s infrastructure. Staff has prepared the supporting information below.

1. Density Examples

 Residential density can be defined and calculated differently, including both gross and net density. Gross density includes street right-of-ways and common and open space areas. Net density, in comparison, includes only the individual housing lots in the calculation, and as such, is typically 50-70% higher than a gross density calculation. Plano’s Zoning Ordinance defines residential density using net density, as follows:

 The number of individual residential living units per acre of the site or lot on which they are located. Calculation of residential density shall be based on the net size of the property, exclusive of public and private street right-of-way, street easements, and park and open space accessible to the public.

 Examples of the net density of various housing developments in Plano are attached to this memo.

 The CPRC has discussed density and some examples of density at various times in the past. For the Committee’s reference, please find the information here:
 - Density introduction – January 22, 2020, CPRC meeting
 - Density examples – February 4, 2020, CPRC meeting
 - Housing types examples – March 3, 2020, CPRC meeting
 - Density comparisons with other cities – August 28, 2020, CPRC memorandum
 - Housing menu report with density examples – November 10, 2020, CPRC meeting

2. Infrastructure Capacity

 Plano’s Public Works and Engineering Departments provided the information below regarding infrastructure capacity.

 Wastewater System

 Plano’s Public Works Department contracted with Freese and Nichols, Inc. to evaluate and analyze the city’s current wastewater system to measure existing performance, identify deficiencies, and determine improvements needed to meet projected future conditions. The
Executive Summary of the draft Wastewater Modeling Services Report from October 2020 is attached to this memo and the full report is available online here.

The City of Plano is finishing its wastewater master plan. The plan will provide for a build-out (with a population of 322,173, estimated at 2038), and future employment growth of 333,382, estimated at 2038. These numbers are conservative (on the high side) from a modeling perspective, but it is better to have excess capacity rather than not enough.

The NTMWD provides our wastewater treatment. They are in the process of the design and then construction of a new regional wastewater treatment plant northeast of McKinney. This treatment plants will meet the needs of the service area. The District is not planning to expand the Rowlett Creek plant in Plano for normal flow; however, they are modifying the plant to handle peak flows related to wet weather.

Storm Sewer – Drainage System

The City of Plano regulations require developers to construct their storm drainage based on a 100-yr fully-developed conditions, not just the capacity needed at the time of development. Per the City’s Storm Drainage Manual, drainage and floodway easements shall be provided for all open channels. Easements shall encompass all areas lower than a ground elevation defined as being the highest of the following: one (1) foot above the calculated water surface elevation based on a design storm whose frequency is 100 years, fully developed or the top of the high bank, whichever is higher. This ensures disturbance to creeks is at a minimum. Also, City of Plano standards require all new structures be constructed two (2) feet above the ultimate 100-yr water surface elevation. When developing along a major creek within the City of Plano, the developer must submit a Flood Study to the City showing the 100-yr water surface elevation based on both current land-use and future land-use assumptions.

The City of Plano is a member of the National Flood Insurance Program (NFIP) and participates in the Community Rating System (CRS), which is administered by Federal Emergency Management Agency (FEMA). The CRS program is a voluntary incentive program, which recognizes and encourages community floodplain management activities which exceed the minimum NFIP requirements. More information: www.plano.gov/303/Floodplain-Information.

Roads

The vast majority of the roads shown on the Thoroughfare Plan Map have been constructed. There simply is very limited areas that lanes can be added to alleviate traffic congestion. The 2045 Metropolitan Transportation Plan (NCTCOG) predicts a growth of 77% between 2017 and 2045. Adding additional lanes will not relieve traffic congestion. Traffic volumes collected in 2017 show the “hotspots” within the City. However, the majority of congestion on the arterial system is a result of capacity issues at intersections. The City has sixteen (16) intersections currently beginning or about to begin capacity improvements (see attached Improving Plano Map). There are another 10-15 locations currently being evaluated or in design. These locations are determined by our High Accident Location (HAL) or High Accident Road Segments (HARS) program. This program is fluid and intersections are evaluated on a yearly basis by transportation engineers.

Water System

Our water system, for showers, toilet flushes, and watering lawns, was designed for a lot more usage than we see today. Our all-time peak day was on September 4, 2000, at 136.1 Million Gallons. There have been only 4 days in the past ten years that have exceeded 130 Million Gallons. During the water restrictions of 2011-15, our goal was based on the 2010-11 water year
of 23.6 Billion Gallons. We have not exceeded that amount since then. The highest year was 2016-17 at 22.2 Billion Gallons. The City of Plano has more than enough water capacity to meet the demand at buildout.

The North Texas Municipal Water District (NTMWD) sells us water on a wholesale basis. They are constructing a new reservoir which will meet the regional needs for over 20 years.

Trash
The Environmental Waste Services Division is prepared to meet the needs for trash, recycling, yard waste pickup and other services into the future. For every 1,000 homes we need one additional route (driver and truck), the cost of which is generally covered by fees for service from those property owners. Commercial and multifamily trash service is provided through a contract with Republic Services.

The North Texas Municipal Water District provides the transfer stations and the landfill necessary for trash disposal. The landfill has over 40 years of capacity. The District is working with the City of Frisco to build a fourth transfer station in northern Frisco to meet capacity requirements for their member cities.

Additional information regarding transportation can be found in the April 17, 2020, CPRC memorandum, specifically question 2, which provides links to various past presentations regarding pavement management and both departments.
Dwelling Units per Acre (DUA) Density Examples

Densities for the following subdivisions were calculated using the density definition from the City of Plano Zoning Ordinance, which defines residential density as “the number of individual residential living units per acre of the site or lot on which they are located. Calculation of residential density shall be based on the net size of the property, exclusive of public and private street right-of-way, street easements, and park and open space accessible to the public.”

** Densities are not representative of the entire subdivisions and will vary from lot to lot.

<table>
<thead>
<tr>
<th>Subdivision Name: Dallas North Estate 9</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 2217 Westlake Dr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 4.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subdivision Name: Trails of Glenwoods</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 6420 Academy Ln.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 4.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subdivision Name: Madison Estates</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 2600 Van Buren Dr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 9.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subdivision Name: Avilla Premier</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 3409 Premier Dr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 11.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dwelling Units per Acre (DUA) Density Examples

Densities for the following subdivisions were calculated using the density definition from the City of Plano Zoning Ordinance, which defines residential density as “the number of individual residential living units per acre of the site or lot on which they are located. Calculation of residential density shall be based on the net size of the property, exclusive of public and private street right-of-way, street easements, and park and open space accessible to the public”.

** Densities are not representative of the entire subdivisions and will vary from lot to lot.

<table>
<thead>
<tr>
<th>Subdivision Details</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision Name: Pasquinellis Westbrook at Ridgeview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location: 3273 Judge Holland Ln.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 11.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subdivision Name: Oak Point Estates	![Oak Point Estates Street View](image3)	![Oak Point Estates Aerial View](image4)
Location: 6213 Texana Way	![Oak Point Estates Street View](image3)	![Oak Point Estates Aerial View](image4)
DUA: 13.27	![Oak Point Estates Street View](image3)	![Oak Point Estates Aerial View](image4)

Subdivision Name: Garden Gate Apartments	![Garden Gate Apartments Street View](image5)	![Garden Gate Apartments Aerial View](image6)
Location: 1201 Legacy Dr.	![Garden Gate Apartments Street View](image5)	![Garden Gate Apartments Aerial View](image6)
DUA: 16.03	![Garden Gate Apartments Street View](image5)	![Garden Gate Apartments Aerial View](image6)

Subdivision Name: Rice Field	![Rice Field Street View](image7)	![Rice Field Aerial View](image8)
Location: 2217 Westlake Dr.	![Rice Field Street View](image7)	![Rice Field Aerial View](image8)
DUA: 16.13	![Rice Field Street View](image7)	![Rice Field Aerial View](image8)
Dwelling Units per Acre (DUA) Density Examples

Densities for the following subdivisions were calculated using the density definition from the City of Plano Zoning Ordinance, which defines residential density as “the number of individual residential living units per acre of the site or lot on which they are located. Calculation of residential density shall be based on the net size of the property, exclusive of public and private street right-of-way, street easements, and park and open space accessible to the public”.

Densities are not representative of the entire subdivisions and will vary from lot to lot.

<table>
<thead>
<tr>
<th>Subdivision Details</th>
<th>Street View</th>
<th>Aerial View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivision Name: Icon at Legacy West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location: 6121 Echelon Way</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUA: 18.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subdivision Name: Evergreen at Plano	![Street View](image3)	![Aerial View](image4)
Location: 600 Independence Pkwy.		
DUA: 21.73		

Subdivision Name: Aura One90	![Street View](image5)	![Aerial View](image6)
Location: 680 Executive Dr.		
DUA: 33.26		

Subdivision Name: Savannah at Gateway	![Street View](image7)	![Aerial View](image8)
Location: 401 Shiloh Rd		
DUA: 40.99		
Dwelling Units per Acre (DUA) Density Examples

Densities for the following subdivisions were calculated using the density definition from the City of Plano Zoning Ordinance, which defines residential density as “the number of individual residential living units per acre of the site or lot on which they are located. Calculation of residential density shall be based on the net size of the property, exclusive of public and private street right-of-way, street easements, and park and open space accessible to the public”.

** Densities are not representative of the entire subdivisions and will vary from lot to lot.

<table>
<thead>
<tr>
<th>Subdivision Name</th>
<th>Location</th>
<th>DUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windrose Tower</td>
<td>7901 Windrose Ave.</td>
<td>45.26</td>
</tr>
<tr>
<td>Junction 15</td>
<td>930 E 15th St.</td>
<td>95.41</td>
</tr>
<tr>
<td>LVL29 Apartments</td>
<td>6000 Columbus Ave.</td>
<td>155.49</td>
</tr>
<tr>
<td>Windrose Tower</td>
<td>8055 Windrose Ave.</td>
<td>64.17</td>
</tr>
<tr>
<td>Windrose Tower</td>
<td>7901 Windrose Ave.</td>
<td>45.26</td>
</tr>
<tr>
<td>Junction 15</td>
<td>930 E 15th St.</td>
<td>95.41</td>
</tr>
<tr>
<td>LVL29 Apartments</td>
<td>6000 Columbus Ave.</td>
<td>155.49</td>
</tr>
</tbody>
</table>
DRAFT

WASTEWATER MODELING SERVICES

Prepared for:

City of Plano

October 2020

Prepared by:

FRESE AND NICHOLS, INC.
4055 International Plaza, Suite 200
Fort Worth, Texas 76109
817-735-7300
DRAFT

WASTEWATER MODELING SERVICES

Prepared for:
City of Plano

<table>
<thead>
<tr>
<th>DRAFT</th>
<th>DRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF Mazen Kawasmi, P.E., TEXAS NO. 106100 ON October 9, 2020. IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES. FREESE AND NICHOLS, INC. TEXAS REGISTERED ENGINEERING FIRM F- 2144</td>
<td>THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF Stephen Johnson, P.E., TEXAS NO. 131497 ON October 9, 2020. IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES. FREESE AND NICHOLS, INC. TEXAS REGISTERED ENGINEERING FIRM F- 2144</td>
</tr>
</tbody>
</table>

Prepared by:
FREESE AND NICHOLS, INC.
4055 International Plaza, Suite 200
Fort Worth, Texas 76109
817-735-7300

FNI Project Number: PLA18153
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. ES-1

1.0 INTRODUCTION .. 1-1
 1.1 Scope of Work ... 1-1
 1.2 List of Abbreviations .. 1-3

2.0 EXISTING WASTEWATER COLLECTION SYSTEM .. 2-1
 2.1 Basin Delineation .. 2-1
 2.2 Lift Stations .. 2-3
 2.2.1 Lift Station Inspections .. 2-4

3.0 TEMPORARY FLOW MONITORING .. 3-1
 3.1 Dry Weather Flow Performance ... 3-5
 3.2 Wet Weather Flow Performance ... 3-8

4.0 POPULATION AND WASTEWATER FLOWS ... 4-1
 4.1 Historical Population ... 4-1
 4.2 Existing Population and Nonresidential Land Use ... 4-2
 4.3 Future Population and Nonresidential Land Use ... 4-3
 4.4 Historical Wastewater Flows .. 4-9
 4.5 Projected Wastewater Flows ... 4-11

5.0 WASTEWATER MODEL DEVELOPMENT AND CALIBRATION .. 5-1
 5.1 GIS Data Evaluation ... 5-1
 5.1.1 Unique Identifier .. 5-1
 5.1.2 Topology Review ... 5-2
 5.2 Model Development ... 5-5
 5.2.1 Model Summary ... 5-5
 5.2.2 Data Flagging ... 5-7
 5.2.3 Ground Model ... 5-8
 5.2.4 Manhole Surveys ... 5-9
 5.2.5 Invert Interpolation ... 5-11
 5.2.6 Subcatchments ... 5-12
 5.2.7 Lift Stations .. 5-13
 5.3 Hydraulic Model Calibration .. 5-14
 5.3.1 Model Calibration Assumptions ... 5-14
 5.3.2 Dry Weather Calibration ... 5-14
 5.3.3 Wet Weather Calibration .. 5-17
6.0 WASTEWATER SYSTEM CAPACITY ANALYSIS ... 6-1
 6.1 Existing Wastewater System Analysis .. 6-1
 6.1.1 Design Criteria Determination .. 6-1
 6.1.2 Existing System Hydraulic Analysis ... 6-3
 6.2 Future Wastewater System Analysis .. 6-5
 6.2.1 Wastewater Line Capacity Analysis ... 6-5
 6.3 Capacity Community Investment Program .. 6-7

7.0 WASTEWATER SYSTEM RISK BASED ASSESSMENT ... 7-1
 7.1 Gravity Main Condition Assessment .. 7-1
 7.1.1 Gravity Main Condition Parameters ... 7-1
 7.1.2 Gravity Main Condition Assessment Results .. 7-6
 7.2 Gravity Main Criticality Assessment .. 7-7
 7.2.1 Gravity Main Criticality Parameters ... 7-7
 7.2.2 Gravity Main Criticality Assessment Results .. 7-11
 7.3 Gravity Main Total Risk Score .. 7-13
 7.4 Gravity Main Risk-Based Renewal CIP and Recommendations 7-14
 7.4.1 Wastewater Renewal Plan ... 7-14
 7.4.2 Wastewater Renewal Decision Tree ... 7-17
 7.5 Renewal CIP Project Prioritization .. 7-21

8.0 COMPREHENSIVE COMMUNITY INVESTMENT PROGRAM 8-1
 8.1 Renewal CIP Project Prioritization ... 8-4
 8.2 2018 through 2022 Collection System Improvements ... 8-4
 8.3 2023 through 2027 Collection System Improvements ... 8-8
 8.4 2028 through 2038 Collection System Improvements ... 8-10
List of Figures

Figure 2-1 Existing Wastewater Collection System ... 2-2
Figure 3-1 Temporary Flow Meter Locations .. 3-3
Figure 3-2 Temporary Flow Meter Schematic ... 3-4
Figure 3-3 ADS-21 Dry Weather Hydrograph Example ... 3-5
Figure 3-4 Design Guidelines for d/D ... 3-6
Figure 3-5 Example Storm Decomposition Hydrograph .. 3-9
Figure 3-6 Example RDII Response vs Rainfall Depth .. 3-11
Figure 3-7 Normalized RDII by Flow Meter Basin ... 3-14
Figure 3-8 Peaking Factors by Flow Meter Basin ... 3-18
Figure 4-1 Population Projections by TSZ .. 4-7
Figure 4-2 Employments Projections by TSZ ... 4-8
Figure 4-3 Wastewater Flow Projections by Major Basin ... 4-16
Figure 5-1 Orphaned Node ... 5-2
Figure 5-2 Orphaned Links .. 5-2
Figure 5-3 Line Endpoint Error ... 5-3
Figure 5-4 Self Overlap Error .. 5-3
Figure 5-5 Self Intersect Error .. 5-4
Figure 5-6 Existing Wastewater System Modeled Network .. 5-6
Figure 5-7 Example Manhole Survey ... 5-9
Figure 5-8 GIS Correction with Survey Data .. 5-10
Figure 5-9 Inverse Slope Correction and Terrain Model .. 5-11
Figure 5-10 Existing Subcatchments ... 5-12
Figure 5-11 Future Subcatchment .. 5-12
Figure 5-12 Average Dry Weather Flow Calibration Results .. 5-16
Figure 5-13 RTK Parameters .. 5-18
Figure 5-14 RTK Component Hydrographs ... 5-18
Figure 5-15 Peak Wet Weather Flow Calibration Results ... 5-20
Figure 6-1 Surcharged State Definition Profiles ... 6-2
Figure 6-2 Existing WW System with Existing Population 5-Year 24-Hour Design Storm Wet Weather Capacity .. 6-4
Figure 6-3 Existing WW System with Projected Population 5-Year 24-Hour Design Storm Wet Weather Capacity .. 6-4
Figure 6-4 Wastewater Collection System Capacity Community Investment Program 6-8
Figure 7-1 Material Condition Score Distribution ... 7-3
Figure 7-2 Age Condition Score Distribution .. 7-3
Figure 7-3 Rehab Material Score Distribution .. 7-4
Figure 7-4 Rehab Age Score Distribution ... 7-4
Figure 7-5 PACP Inspection Score Distribution ... 7-5
Figure 7-6 LOF Score Distribution .. 7-6
Figure 7-7 Access Issues Criticality Score Distribution .. 7-9
Figure 7-8 Customers Served Criticality Score Distribution .. 7-9
Figure 7-9 Environmental Concern Criticality Score Distribution ... 7-10
Figure 7-10 Critical Customers Criticality Score Distribution ... 7-10
Figure 7-11 q/Q Criticality Score Distribution .. 7-11
Figure 7-12 COF Score Distribution .. 7-12
Figure 7-13 Risk Score Distribution .. 7-13
Figure 7-14 PACP Inspection Defect .. 7-15
Figure 7-15 Gravity Main Renewal Decision Tree ... 7-18
Figure 7-16 Collection System Renewal Action Summary .. 7-19
Figure 7-17 Wastewater System Renewal Community Investment Program 7-20
Figure 7-18 Risk Score Distribution .. 7-22
Figure 8-1 Comprehensive Wastewater Collection System Community Investment Program 8-3
List of Tables

Table ES-1 Wastewater System Summary ... ES-1
Table ES-2 Projected Population by Basin ... ES-2
Table ES-3 Projected Wastewater Flows ... ES-3
Table ES-4 Gravity Main Risk Scoring Results ... ES-5
Table ES-5 Wastewater System Community Investment Program Costs ES-5
Table 1-1 List of Abbreviations .. 1-3
Table 2-1 Wastewater System Summary .. 2-1
Table 2-2 Basin Summary .. 2-3
Table 2-3 Lift Station Capacities .. 2-3
Table 2-4 Lift Station Inspection Component Scoring ... 2-4
Table 2-5 Lift Station Site Inspection Summary ... 2-4
Table 3-1 Flow Monitoring Locations ... 3-2
Table 3-2 Dry Weather Summary ... 3-2
Table 3-3 Summary of Rainfall Events .. 3-7
Table 3-4 Normalized RDII Volume Summary for All Storm Events Captured during Temporary Flow Monitoring .. 3-10
Table 3-5 5-year, 6-hour Design Storm Projected RDII Volume Ranking 3-13
Table 3-6 Wet Weather Depth to Diameter Ratios .. 3-16
Table 3-7 Wet Weather Peaking Factors .. 3-17
Table 4-1 Historical Population .. 4-1
Table 4-2 2016 American Community Survey Density and Occupancy Rates 4-3
Table 4-3 City of Plano Population and Employment Projections 4-6
Table 4-4 Residential Winter Quarterly Water Consumption 4-10
Table 4-5 Non-Residential Winter Quarterly Water Consumption 4-11
Table 4-6 Existing (2018) Wastewater Flow Projections ... 4-12
Table 4-7 Projected 2023 Wastewater Flows .. 4-13
Table 4-8 Projected 2028 Wastewater Flows ... 4-14
Table 4-9 Projected 2038 Wastewater Flows ... 4-15
Table 5-1 Data Flags .. 5-8
Table 5-2 Lift Station Capacities .. 5-13
Table 5-3 Dry Weather Calibration .. 5-15
Table 5-4 Wet Weather Calibration .. 5-19
Table 7-1 Gravity Main Condition Assessment Parameters 7-2
Table 7-2 Gravity Main LOF Score Range and Results ... 7-6
Table 7-3 Gravity Main Criticality Assessment Parameters 7-8
Table 7-4 Gravity Main COF Score Range and Results ... 7-12
Table 7-5 Gravity Main Risk Scoring Results ... 7-13
Table 8-1 Comprehensive Wastewater Modeling Services CIP Summary 8-2
APPENDICES

Appendix A: Community Investment Program Opinion of Probable Construction Costs
Appendix B: Lift Station Data Summary
Appendix C: Lift Station Site Inspections
Appendix D: ADS Environmental Services Sewer System Performance Report
Appendix E: Population, Employment, and Wastewater Flow Projection Mapping
Appendix F: Manhole Surveys
Appendix G: Dry Weather Calibration Graphs
Appendix H: Wet Weather Calibration Graphs
Appendix I: Risk-Based Assessment Analysis Mapping
EXECUTIVE SUMMARY

1.0 INTRODUCTION

This report presents the analysis approach, findings, and results of the Wastewater Modeling Services performed by Freese and Nichols, Inc. (FNI) for the City of Plano. The goal of this project was to evaluate and analyze the systems to measure existing performance, identify deficiencies, and determine improvements needed to meet projected future conditions. Historical wastewater usage was reviewed to establish trends and project demands and flows for the system evaluations. Based on the evaluations, a phased 20-year Community Investment Program (CIP) was developed for the collection system. The recommended improvements will serve as a basis for the design, construction, and financing of lines and facilities required to meet Plano’s future system needs. The major elements of the scope of this project include:

- Population Wastewater Flow Projections for 5-Year, 10-Year, and 20-year Conditions
- Wastewater Hydraulic Model Development and Calibration
- Hydraulic Capacity Analysis and Capacity CIP
- Wastewater System Risk-Based Assessment and Rehabilitation CIP
- Comprehensive Community Investment Program

2.0 EXISTING WASTEWATER COLLECTION SYSTEM

The City of Plano’s wastewater service area covers approximately 77 square miles and consists of 14 major sewer basins. Portions of the City’s collection system such as interceptors, lift stations, and the Rowlett Creek Wastewater Treatment Plant (WWTP) is owned and operated North Texas Municipal Water District (NTMWD). Table ES-1 gives a summary of the length of pipe and ownership within the City’s wastewater system.

<table>
<thead>
<tr>
<th>Table ES-1</th>
<th>Wastewater System Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City of Plano</td>
</tr>
<tr>
<td>Gravity Line</td>
<td></td>
</tr>
<tr>
<td>Length (miles)</td>
<td>1,005</td>
</tr>
<tr>
<td>Diameter (in)</td>
<td>3 - 54</td>
</tr>
<tr>
<td>Force Main</td>
<td></td>
</tr>
<tr>
<td>Length (miles)</td>
<td>4</td>
</tr>
<tr>
<td>Diameter (in)</td>
<td>2 - 36</td>
</tr>
</tbody>
</table>
3.0 TEMPORARY FLOW MONITORING

Flow monitoring data was used to examine the existing dry and wet weather flows, evaluate the effects of rainfall on the wastewater collection system, and provide real-world data to calibrate the hydraulic model for evaluating the capacity of the system to transport peak flows. The system was evaluated using 24 temporary flow meters and four temporary rain gauges installed throughout the collection system for 89 days beginning March 18, 2018 and ending on June 14, 2018. The locations were strategically selected to allow the temporary flow meters to monitor the system’s performance during rain events to identify rainfall-dependent inflow and infiltration (RDII) and provide data for hydraulic model calibration. During this time, NTMWD was conducting separate flow monitoring at 50 locations throughout the City. These flow monitors were evaluated by NTMWD and are not included in this analysis but were available during the hydraulic model calibration. Collected rainfall data was examined along with the flow monitoring data to select rainfall events of varying magnitudes and peak intensities to facilitate wet weather calibration.

4.0 POPULATION AND WASTEWATER FLOWS

Population and land use are important elements in the analysis of wastewater systems. Wastewater flows depend on the residential population and commercial development served by the system. An analysis of historical and projected populations, along with land use, provides the basis for projecting future flows. The projected population and employment population for each planning year for the City are shown in Table ES-2.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>285,210</td>
<td>226,682</td>
</tr>
<tr>
<td>2023</td>
<td>292,999</td>
<td>253,893</td>
</tr>
<tr>
<td>2028</td>
<td>300,788</td>
<td>281,105</td>
</tr>
<tr>
<td>2038</td>
<td>316,366</td>
<td>335,529</td>
</tr>
</tbody>
</table>

Wastewater flows were projected for existing (2018), 2023, 2028, and 2038 conditions. The evaluation of historical data provided a basis for determining the design criteria used to project wastewater flows. Table ES-3 summarizes the wastewater flows for each planning year.
Table ES-3 Projected Wastewater Flows

<table>
<thead>
<tr>
<th>Basin</th>
<th>2018 Average Day Flow (MGD)</th>
<th>2018 Peak Wet Weather Flow (MGD)</th>
<th>2023 Average Day Flow (MGD)</th>
<th>2023 Peak Wet Weather Flow (MGD)</th>
<th>2028 Average Day Flow (MGD)</th>
<th>2028 Peak Wet Weather Flow (MGD)</th>
<th>2038 Average Day Flow (MGD)</th>
<th>2038 Peak Wet Weather Flow (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottonwood Creek</td>
<td>0.63</td>
<td>2.46</td>
<td>0.64</td>
<td>2.49</td>
<td>0.65</td>
<td>2.53</td>
<td>0.66</td>
<td>2.60</td>
</tr>
<tr>
<td>Indian Creek</td>
<td>2.21</td>
<td>8.43</td>
<td>2.57</td>
<td>9.87</td>
<td>2.93</td>
<td>11.31</td>
<td>3.65</td>
<td>14.19</td>
</tr>
<tr>
<td>North Dallas Trunk</td>
<td>1.32</td>
<td>4.06</td>
<td>1.63</td>
<td>4.96</td>
<td>1.93</td>
<td>5.86</td>
<td>2.54</td>
<td>7.65</td>
</tr>
<tr>
<td>Pitman Creek</td>
<td>2.04</td>
<td>9.03</td>
<td>2.12</td>
<td>9.35</td>
<td>2.20</td>
<td>9.67</td>
<td>2.36</td>
<td>10.30</td>
</tr>
<tr>
<td>Plano Parkway</td>
<td>0.83</td>
<td>1.93</td>
<td>0.97</td>
<td>2.18</td>
<td>1.12</td>
<td>2.42</td>
<td>1.40</td>
<td>2.91</td>
</tr>
<tr>
<td>Plano East</td>
<td>0.15</td>
<td>0.40</td>
<td>0.17</td>
<td>0.48</td>
<td>0.20</td>
<td>0.56</td>
<td>0.25</td>
<td>0.72</td>
</tr>
<tr>
<td>Prairie Creek</td>
<td>0.87</td>
<td>3.25</td>
<td>0.89</td>
<td>3.32</td>
<td>0.91</td>
<td>3.39</td>
<td>0.95</td>
<td>3.53</td>
</tr>
<tr>
<td>Ridgewood Creek</td>
<td>1.11</td>
<td>4.44</td>
<td>1.15</td>
<td>4.58</td>
<td>1.18</td>
<td>4.72</td>
<td>1.25</td>
<td>4.99</td>
</tr>
<tr>
<td>Rowlett Creek</td>
<td>2.21</td>
<td>7.52</td>
<td>2.50</td>
<td>8.67</td>
<td>2.79</td>
<td>9.81</td>
<td>3.37</td>
<td>12.11</td>
</tr>
<tr>
<td>Russell Creek</td>
<td>2.61</td>
<td>10.40</td>
<td>2.67</td>
<td>10.64</td>
<td>2.73</td>
<td>10.88</td>
<td>2.84</td>
<td>11.35</td>
</tr>
<tr>
<td>Spring Creek</td>
<td>4.78</td>
<td>16.36</td>
<td>5.04</td>
<td>17.28</td>
<td>5.30</td>
<td>18.20</td>
<td>5.82</td>
<td>20.04</td>
</tr>
<tr>
<td>White Rock Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>4.34</td>
<td>15.16</td>
<td>4.80</td>
<td>16.99</td>
<td>5.26</td>
<td>18.81</td>
<td>6.18</td>
<td>22.47</td>
</tr>
<tr>
<td>Low</td>
<td>4.31</td>
<td>16.79</td>
<td>4.53</td>
<td>17.67</td>
<td>4.75</td>
<td>18.56</td>
<td>5.19</td>
<td>20.32</td>
</tr>
<tr>
<td>Young Branch</td>
<td>0.73</td>
<td>1.79</td>
<td>0.80</td>
<td>2.07</td>
<td>0.87</td>
<td>2.34</td>
<td>1.01</td>
<td>2.90</td>
</tr>
<tr>
<td>Total</td>
<td>28.14</td>
<td>102.01</td>
<td>30.48</td>
<td>110.53</td>
<td>32.81</td>
<td>119.05</td>
<td>37.48</td>
<td>136.09</td>
</tr>
</tbody>
</table>

5.0 WASTEWATER MODEL DEVELOPMENT AND CALIBRATION

As part of the Project, FNI developed a hydraulic model to be used as a tool for evaluating the wastewater collection system using the *InfoWorks ICM* software by *Innovyze*. *InfoWorks ICM* combines a relational database with geographic analysis to provide a single environment that integrates asset planning with hydraulic modeling. The software makes use of engineering equations and mathematical algorithms to determine the flows and velocities that would occur in a collection system under a specified set of conditions.

The dynamic hydraulic model is capable of evaluating the impact of wastewater flow generation on the collection system over time. This capability allows the user to model and evaluate system performance over time due to changing flow characteristics from both domestic and variable wet weather field conditions. These conditions include various infiltration and inflow rates throughout the system in response to varying weather and environmental conditions, allowing more accurate modeling results.
6.0 WASTEWATER SYSTEM CAPACITY ANALYSIS

Following model calibration for both dry and wet weather storm events, the next step in the Wastewater Modeling Services process was to use the wastewater system hydraulic model to evaluate the existing system under existing flows and future flows and evaluate alternatives to address modeled capacity deficiencies. The existing system was evaluated under the 5-year, 24-hour design storm (5.4 inches) identified in NTMWD's Regional Hydraulic Model Protocol to determine areas where the model predicted surcharging or overflows. Mapping was developed to show areas where the capacity of the system is exceeded by the loading upstream.

Hydraulic analyses were conducted to identify deficiencies in the wastewater system and establish a CIP to reinforce the existing system and convey projected wastewater flows through the 20-year planning period. Various combinations of improvements and modifications were investigated to determine the most appropriate approach for conveying projected flows.

7.0 WASTEWATER SYSTEM RISK BASED ANALYSIS

In addition to the capacity analysis, FNI developed a risk-based assessment (RBA) for the City’s wastewater system gravity mains. The goal of the RBA program is to develop a more proactive approach to maintaining the City’s wastewater gravity lines through effective rehabilitation and renewal. Overall risk is calculated as the product of an asset’s condition (the likelihood of failure) and its criticality (the consequence of failure). FNI conducted a desktop RBA to assign condition and criticality scores to each wastewater gravity line. Once the risk of each asset was determined, a high-level decision process was used to assign a specific action to each asset to help identify renewal projects that improve the reliability of the wastewater system. The overall risk was scored from 0 to 100 where 0 is a very low risk and 100 is very high. The results of the risk scoring are shown in Table ES-4.
A decision tree was developed to identify wastewater candidate assets for renewal. The recommended improvements help to mitigate the overall risk of the wastewater collection system by improving the condition. Rehabilitation actions for each asset in the collection system include:

- Contract Inspection
- High Priority Rehabilitation
- In-House Inspection
- Moderate Priority Replacement
- Point Repair Initiative
- Replacement
- Small Diameter Lining
- Small Diameter Rehabilitation/Replace

8.0 COMPREHENSIVE COMMUNITY INVESTMENT PROGRAM

A comprehensive wastewater CIP was developed for the City of Plano to address existing deficiencies in the system, as well as provide capacity for future loading in the wastewater collection system. CIP projects were analyzed and phased into the planning period in which they become hydraulically necessary. Costs were calculated for the recommended improvements. The costs include an allowance for engineering, surveying, and contingencies. **Table ES-5** summarizes the cost of the wastewater system CIP by planning period for the City of Plano. Detailed project descriptions, drivers, and estimated costs are provided in Appendix A.

<table>
<thead>
<tr>
<th>Planning Period</th>
<th>Estimated Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Term CIP</td>
<td>$270,249,600</td>
</tr>
<tr>
<td>Intermediate-Term CIP</td>
<td>$164,152,000</td>
</tr>
<tr>
<td>Long-Term CIP</td>
<td>$46,185,900</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$480,587,500</td>
</tr>
</tbody>
</table>
Construction can be disruptive, but the end result is a better Plano. Here are major intersection projects underway in the City of Plano over the next six months. (Start and completion dates are estimated.)

FOR PROJECT DETAILS, PLEASE VISIT PLANO.GOV/CIP

1. Park and Coit
 Start: 9/20 Completion: 1/21
2. Park and Custer
 Start: 11/20 Completion: 4/21
3. Park and Alma
 Start: 4/21 Completion: 7/21
4. Park and K
 Start: 5/21 Completion: 5/21
5. Park and Jupiter
 Start: 9/20 Completion: 12/20
6. Parker and Coit
 Start: 10/20 Completion: 3/21
7. Parker and Alma
 Start: 10/20 Completion: 3/21
8. Plano Parkway and Executive
 Start: 5/20 Completion: 10/21
9. Plano Pkwy and Independence
 Start: 5/20 Completion: 10/21
10. Plano Pkwy and Parkwood
 Start: 5/20 Completion: 10/21
11. Headquarters and Legacy
 Start: 5/20 Completion: 10/21
12. Legacy and Independence
 Start: 12/20 Completion: 5/21
13. Legacy and Custer
 Start: 12/20 Completion: 6/21
14. Legacy and K
 Start: 12/20 Completion: 7/21
15. Legacy and Parkwood
 Start: 12/20 Completion: 8/21
16. Coit and Mapleshade
 Start: 12/20 Completion: 8/21

Sign up for weekly news updates from the City of Plano at plano.gov/news
Listen to the City’s monthly podcast at insideplano.com